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History of Electric Power Transmission
~ History of dielectric development

Dielectric materials development is slow because...

« dielectrics have complex Polymer
morphological structures nanocomposites

* High field effects are
complicated

Franklin's Glass-
metal foil (1750s)

Mica Lacquer on
(1909) paper (WW2)

Polymer films,

by Bell systems]
(1954)

Water in the
Leyden Jar (1746)
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A
T. D. Huan et al., Prog. Mat. Sci., 83, 236, (2016)

=) Need to accelerate materials development

We are in the industrial age of
first principles modeling and Big-data analytics !

Impact beyond academia

-potential applications -

Dielectrics

Electric power equipment
*Energy storage

*Remote wireless sensing device

Inorganic semiconductors
*Water splitting
*Solar to Fuel

Organic semiconductors
*Flexible device

http://flodd

Designing the electrical properties using

first-principles calculations and machine learning
# Y% J 3 '

Computational materials design

High-throughput materials screenin
/ g gnp g \

First-principles Accelerated
(Deductive)  Machine learning * Materials discovery

/ (Inductive) * Materials.design
: s i

https://www.sligesnare. neuwanOz https://ja.wikipedia.org/wiki/%E4%BA%BA%ES
doruk/tera-chem-heatherkulik %B7%AS%ET%9F%A5%E8%83%BD

» Understanding the origin of the characteristic
electrical properties (Basic research)

* Predict and design new materials (Applied science) g

Today’s outline

1. First principles based modeling of charge
transfer in polymers (main topic)

 Multi-scale modeling approach for
charge transfer in polymers 3 .
» Charge injection from electrodes to H T - E SU

polymers

2. Prediction of the physical quantities of gases
« Computation of non-linear optical
properties from first-principles
» Prediction of electric breakdown
strength of gases using first-principles
calculation and machine learning




1. Simulation of charge t‘réhéport

~in organic. polymer dlelectrlcs
. by a first- -principles based
multl-scale modellng approach

Why charge transport in polymers ?

» Charge transport in polymers degrade the material

* In DC applications, space charge formation leads to Field
enhancement
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Characterize the charge transport properties to
tailor the electrical properties of polymer dielectrigs

What is First-principles calculation
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No assumptions such as empirical model and fitting parametefﬁ

Multi-scale modeling method

A KMC simulation
1e-3 A

1e-6 =+ MD simulation
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time (s)

Hopping rates are computed
by the Marcus formula
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Amorphous structure of PE

polymer film

x 10000

* Number of hopping sites:
500
10-100 um " T:300K

Typical outcomes (Current waveform)
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Current waveforms can be simulated from first principles!
(without adopting empirical parameters)

e Simulated distance : 50 nm
« 50 kV/imm
« 300 K

Typical outcomes (KMC simulation)

 Playback speed: X107 (100 ns : 1 sec)

Computed electron and hole mobilities
1e0 —

PE cryst. hole [a,1
PE hole u

PET ele. Cr
PET hole
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1e-2 ta""!e Experimental: 2M. R. Belmont et al.,
£ ] J. Phys. Chem. Solids 46, 607 (1985),
b H. Neff and P. Lange, J. Appl. Phys.
72, 4369 (1992), ¢ K. Yoshino, J.
16-4 [ Kyokane, T. Nishitani, and Y. Inuishi,
J. Appl. Phys. 49, 4849 (1978)
Computed (PE): [1] M. Sato, A.
Kumada, K. Hidaka, T. Hirano, and F.
Sato, Appl. Phys. Lett., 110, 092903,
(2017), [2] M. Sato, A. Kumada, and K.
] Amorphou S! Hidaka, Phys. Chem. Chem. Phys., 21,
1812-1819, (2019)
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Computed mobility (cm?/Vs)
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Experimental mobility (cm?/Vs)

 Excellent agreement with experiments!
* The multi-scale simulation method makes it possible to
predict the carrier transfer properties. 16




—n > .
= FHF ch E X SF‘5 Alternatives
1. FHPPCEMHM DR € . . .
2. BRFHEOEREOHE + SFg was included in the six greenhouse gases covered
by the Kyoto Protocol
< * The life-cycle cost of SF4 insulation is subject to review
\ -
3. BELLOBAEA * SF 4 alternatives have been explored continuously.
4. RUZ—F A RS 102 y » There are vast number of gases, in silico materials
SRR — TN o o Btrbeed X screening is promising for seeking alternative gases.
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2. Prediction of electric breakdown Prediction of Eg, of SF, alternatives
strength and boiling point of 3
gases using first-principles
calculation and

Training set
CF3I

(CF,),CFCN
CFSC(O)CF(CFs)2

N
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Predictors |, i, &}, &, A&,
(computed with the aid of first-
principles calculations)
Molecules with N and | atoms
are excluded from the training
set

Training dataset size ~ 50
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Predicted breakdown field (a.u.)
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How can we develop efficient and stable
photocatalysts and (photo)electrodes

\3..0

|:> The knowledge of the physical basis of PEC reactions

is required to tailor the properties of photo-electrodes.
—

What we need to know -the known unknowns-

?
Photocatalyst Durabili

= Geometric structure N Charge transfer Ly
Electronic structure Chemical reaction

semiconductor

a. Geometric structure clectrolyte
» Linked to the electronic structure &

b.Electronic structure
»Band alignment
(Potential shift, surface state pinning)

V drop at
L V. Helmholtz layer

—

vacuum level

c.CT, chemical reactions
» Reaction kinetics E,
(Selectivity, rate limiting step) E,

Atomistic characterization of L3
EV

_|redox potential

(©)

the “(a) Interface structure” sugtaa\ctgs
and “(b) Band alignment”

Characterization of semiconductor/electrolyte

interface

Experiment, Synthesis == Theory, Atomistic modeling

Geometric Electronic
Structure Structure
TEM, SEM,
Surface AFM. LEED UPS, XPS
Adsorption AP-XPS :
ntertace. | (NI ok i

DFT

This talk will focus on DFT and AP-XPS results. -
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Coverage (a.u.)

\ OH increases at
higher coverage
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Vacuum Vacuum 3 mbar Evac.
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Summary

€ Charge transfer and injection was
simulated from first-principles
The multi-scale simulation method
makes it possible to predict the
carrier transfer properties

@ Successfully predicted the
dielectric breakdown field of gases
by combining Machine learning and
First-principles calculation
The appropriate combination of first-

principles approach and machine
learning techniques will offer a ol
rational approach for materials design. _ 0 05 1 15 2 25 3

Experimental breakdown field [SFs" 11 (a.u.)

Predicted breakdown field (a.u.)

Prospective
-computational dielectric design-

High-throughput materials screening

First-prinqiples Machine learning Accelerated
(Deductive) (Inductive) « Materials discovery
» Materials design

https:/Awvww.slideshare.net/CanOz

https://ja.wikipedia. org/wikil%E4%BA%BA%ES
doruk/tera-chem-heatherkulik o o

6B7%AS%ET %IF %AS%E8%83%BD

thid
https: /MW
dorukitera-c

* First-principles dielectric design has become realistic!
* Machine learning can be used together to beyond the limit.

Thank you for your kind attention!




